Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.054$
$S=0.704$
423 reflections
32 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)\right]$
$(\Delta / \sigma)_{\text {max }}=0.045$
$\Delta \rho_{\max }=1.64 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.63 \mathrm{e}^{-3}$
Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Erl	0	0.65375 (9)	1/4	0.0097 (2)
Er2	0.19927 (5)	0	0	0.0105 (2)
$\mathrm{Ge} 3 \dagger$	0	0.0408 (2)	1/4	0.0059 (15)
Ga4 \ddagger	0	0.0408 (2)	1/4	0.041 (12)
Ga5	0	0.32084 (17)	0.44813 (12)	0.0117 (3)
Ge6	0.20266 (12)	0.29135 (17)	1/4	0.0119 (3)

\dagger Site occupancy $=0.787$ (16). \ddagger Site occupancy $=0.213$ (16).
Table 2. Selected bond lengths (\AA)

Erl-Ga5 ${ }^{\text {i }}$	2.8387 (11)	$\mathrm{Ge} 3-\mathrm{Ge}^{\text {'11 }}$	2.6454 (17)
Erl-Ga5 ${ }^{\text {i }}$	2.8387 (11)	$\mathrm{Ge} 3-\mathrm{Ga} 5$	2.7878 (18)
$\mathrm{Er} 1-\mathrm{Ge} 3{ }^{\text {iii }}$	2.871 (2)	Ge3-Ga5"	2.7878 (18)
Erl-Ge6 ${ }^{1 /}$	2.9443 (12)	$\mathrm{Ge} 3-E r 1^{\text {x }}$	2.871 (2)
Erl-Ge6*	2.9443 (12)	$\mathrm{Ge} 3-\mathrm{Er} 2{ }^{\text {x }}$	3.0033 (4)
Erl-Gas ${ }^{\text {vi }}$	3.0910 (13)	$\mathrm{Ge} 3-\mathrm{Er} 2^{\mathrm{xij}}$	3.0033 (4)
Erl-Ga5	3.0910 (13)	Ga5-Ge6 ${ }^{\text {¹I }}$	2.6546 (12)
Erl-Ge6 ${ }^{\text {vii }}$	3.2817 (13)	Ga5-Ge6	2.6546 (12)
Erl-Ge6	3.2817 (13)	Ga5-Ga5 ${ }^{\text {i }}$	2.831 (2)
$\mathrm{Er} 2-\mathrm{Ge} \mathrm{e}^{\text {viii }}$	2.9543 (8)	Ga5-Er1 ${ }^{1}$	2.8387 (11)
Er2-Ge6 ${ }^{\text {ix }}$	2.9543 (8)	$\mathrm{Ga5}-\mathrm{Er} 2^{\mathrm{x} \mathrm{v}_{1}}$	3.0540 (10)
Er2-Ge3 ${ }^{\text {x }}$	3.0033 (4)	$\mathrm{Ga} 5-\mathrm{Er2}^{\text {vi }}$	3.0540 (10)
$\mathrm{Er} 2-\mathrm{Ge} 3$	3.0033 (4)	Ga5-Er2 ${ }^{\text {xvii }}$	3.1313 (7)
$\mathrm{Er} 2-\mathrm{Ga} 5^{\mathrm{xi}}$	3.0540 (10)	$\mathrm{Ga} 5-\mathrm{Er} 2{ }^{\text {xvii }}$	3.1313 (7)
Er2-Ga5 ${ }^{\text {vi }}$	3.0540 (10)	Ge6-Ga5 ${ }^{\text {vi }}$	2.6546 (12)
$\mathrm{Er} 2-\mathrm{Ga} 5^{\text {xii }}$	3.1313 (7)	Ge6-Er1 ${ }^{\text {x1x }}$	2.9443 (12)
Er2-Ga5 ${ }^{\text {xiii }}$	3.1313 (7)	Ge6-Er2 ${ }^{\text {xii }}$	2.9543 (8)
Er 2 - $\mathrm{Ge}^{\text {xiv }}$	3.1897 (9)	$\mathrm{Ge} 6-\mathrm{Er2}{ }^{\text {viii }}$	2.9543 (8)
Er 2 -Ge6	3.1897 (9)	Ge6-Er2 ${ }^{\text {w1 }}$	3.1897 (9)
Ge3-Ge6	2.6454 (17)		

Symmetry codes: (i) $-x, 1-y, 1-z$; (ii) $-x, 1-y, z-\frac{1}{2}$; (iii) $x, 1+y, z$; (iv) $\frac{1}{2}-x, \frac{1}{2}+y, z ;$ (v) $x-\frac{1}{2}, \frac{1}{2}+y, z ;$ (vi) $x, y, \frac{1}{2}-z ;$ (vii) $-x, y, z ;$ (viii) $\frac{1}{2}-x, \frac{1}{2}-y,-z ;$ (ix) $\frac{1}{2}-x, y-\frac{1}{2}, z ;$ (x) $-x,-y,-z ;$ (xi) $-x,-y, z-\frac{1}{2}$; (xii) $\frac{1}{2}-x, \frac{1}{2}-y, z-\frac{1}{2}$; (xiii) $\frac{1}{2}+x, y-\frac{1}{2}, \frac{1}{2}-z$: (xiv) $x,-y,-z:$ (xv) $x, y-1, z$; (xvi) $-x,-y, \frac{1}{2}+z$; (xvii) $\frac{1}{2}-x, \frac{1}{2}-y, \frac{1}{2}+z$: (xviii) $x-\frac{1}{2}, \frac{1}{2}+y, \frac{1}{2}-z ;(\mathrm{xix}) \frac{1}{2}+x, y-\frac{1}{2}, z$.

In the final electron-density difference map, both the minimum ($-1.63 \mathrm{e}^{-3} \AA^{-3}$ at $0.5,0.1456,0.347$) and the maximum ($1.64 \mathrm{e}^{-3} \AA^{-3}$ at $0.4378,0.0552,0.5$) peaks occur approximately $0.93 \AA$ from the heavy Erl atom. They are due to the irregular crystal shape and the empirical absorption correction method (SORTAV; Blessing, 1987). The SHELXL97 (Sheldrick, 1997a) recommended weighting scheme ($a=0, b=0$) does not permit one to obtain a goodness-of-fit value close to 1.0 . The low value of the least-squares goodness-of-fit is due to the data reduction procedure ($D E N Z O$ and SCALEPACK; Otwinowski \& Minor, 1997), which overestimates (by a factor of approximately 1.3) the standard deviation of the measured intensities.

Data collection: COLLECT (Nonius, 1998). Cell refinement: COLLECT. Data reduction: DENZO and SCALEPACK. Pro-
gram(s) used to solve structure: SHELXS97 (Sheldrick, 1997b). Program(s) used to refine structure: SHELXL97. Molecular graphics: ATOMS for Windows (Dowty, 1995). Software used to prepare material for publication: SHELXS97.

We are grateful to Dr Claude Didierjean (Laboratoire de Cristallographie et Modelization des Materériaux Mineraux et Biologiques, Faculté des Sciences de Nancy I) for his help during the data reduction.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1251). Services for accessing these data are described at the back of the journal.

References

Blessing, R. H. (1987). Crystallogr. Rev. 1, 3-58.
Cromer, D. T. (1976). Acta Cryst. B32, 1930-1932.
Dowty, E. (1995). ATOMS for Windows. Version 3.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Nonius (1998). COLLECT. Data Collection Software. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzvmol. 276, 307-326.
Sheldrick, G. M. (1997a). SHELXL97. Program for the Refinement of Crustal Structures. University of Göttingen. Germany.
Sheldrick, G. M. (1997b). SHELXS97. Program for the Solution of Crustal Structures. University of Göttingen. Germany.
Villars, P. \& Calvert, L. D. (1991). Pearson Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed., p. 281. ASM International.
Yatsenko. S. P., Hladyshevshii, E. I., Tschuntonow, K. A., Yarmolyuk, Ya. P. \& Hryn, Yu. N. (1983). J. Less Common Met. 91, 21-32.

Acta Cryst. (1999). C55, 1970-1972

The solid solution of composition $\mathbf{K}_{2} \mathbf{P d B r}_{2.24} \mathbf{C l}_{1.76}$

Hedi Omrani, ${ }^{a}$ Richard Welter ${ }^{b}$ and Rene
Vangelisti ${ }^{b}$

${ }^{a}$ Faculté des Sciences, Département de Chimie, Monastir 5000, Tunisia, and ${ }^{b}$ Laboratoire de Chimie du Solide Minéral, UMR 7555, Université Henri Poincaré Nancy I, Faculté des Sciences, BP 239, 54506 Vandoeuvre les Nancy CEDEX, France. E-mail: richard.welter@lcsm.u-nancy:fr
(Received 19 July 1999; accepted 14 September 1999)

Abstract

The structure of $\mathrm{K}_{2} \mathrm{PdBr}_{2.24} \mathrm{Cl}_{1.76}$, dipotassium bromochloropalladate, an isotype of $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ and $\mathrm{K}_{2} \mathrm{PdBr}_{4}$, has been determined in the centrosymmetric space group $P 4 / \mathrm{mmm}$. The tetragonal cell contains one Pd atom. The $\left[\mathrm{Pd} X_{4}\right]^{2-}$ ions $(X=\mathrm{Cl}, \mathrm{Br})$ are square planar, with $\mathrm{Pd}-$ X bond lengths of 2.3934 (9) \AA.

Comment

The structure of $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ has been determined by Mais et al. (1972) and that of $\mathrm{K}_{2} \mathrm{PdBr}_{4}$ by Martin et al. (1975). Our X-ray powder diffraction analyses of anhydrous $\mathrm{K}_{2} \mathrm{PdCl}_{4-x} \mathrm{Br}_{x}(0<x<4)$ solid solutions have demonstrated that these compounds are isotypes of both potassium tetrachloropalladate(II) and potassium tetrabromopalladate(II), which crystallize in the tetragonal system with the $P 4 / \mathrm{mmm}$ space group. In the present work, we report the crystal structure refinement of the solid solution of composition $\mathrm{K}_{2} \mathrm{PdBr}_{2.24} \mathrm{Cl}_{1.76}$ (Fig. 1). The refinement shows unambiguously that Br and Cl atoms occupy the same site $X(4 j)$. The $\mathrm{Pd}-X$ distances [2.3934 (9) A] are intermediate between those obtained previously for $\mathrm{Pd}-\mathrm{Cl}[2.313$ (1) \AA A $]$ in $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ (Mais et al., 1972) and $\mathrm{Pd}-\mathrm{Br}\left[2.444\right.$ (1) \AA] in $\mathrm{K}_{2} \mathrm{PdBr}_{4}$ (Martin et al., 1975).

Fig. 1. A view of the asymmetric unit of $\mathrm{K}_{2} \mathrm{PdBr}_{2.24} \mathrm{Cl}_{1.76}$. Displacement ellipsoids are shown at the 90% probability level. [Symmetry codes: (vii) $-x,-y,-z$; (viii) $y,-x,-z ;(\mathrm{x})-y, x, z$.]

Experimental

Crystals of $\mathrm{K}_{2} \mathrm{PdBr}_{2.24} \mathrm{Cl}_{1.76}$ were prepared by dissolving commercial powders of $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ and $\mathrm{K}_{2} \mathrm{PdBr}_{4}$ (Fluka purissiumum) in aqueous $\mathrm{HCl}(M / 10)$. The concentration was $0.005 \mathrm{~mol}^{-1}$ in $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ and $\mathrm{K}_{2} \mathrm{PdBr}_{4}$, and the solution was evaporated slowly in a furnace at 353 K . After complete crystallization, yellow-ochre to red-brown crystals were obtained and preserved in a desiccator over $\mathrm{P}_{4} \mathrm{O}_{10}$. A single crystal was then sealed in a Lindemann glass capillary.

Crystal data

$\mathrm{K}_{2} \mathrm{PdBr}_{2.24} \mathrm{Cl}_{1.76}$
$M_{r}=425.99$
Tetragonal
$P 4 / \mathrm{mmm}$
$a=7.237$ (1) \AA
$c=4.208(1) \AA$
$V=220.39(7) \AA^{3}$
$Z=1$
$D_{x}=3.210 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
diffractometer
$\mathrm{Ag} K \alpha$ radiation
$\mathrm{Ag} K \alpha$ radiation
$\lambda=0.56087 \AA$
Cell parameters from 25
\quad reflections
$\theta=5-15^{\circ}$
$\mu=7.236 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Parallelepiped
$0.02 \times 0.02 \times 0.02 \mathrm{~mm}$
Dark brown

$R_{\text {int }}=0.048$
$\theta_{\text {max }}=24.72^{\circ}$
ω / θ scans
Absorption correction: none 434 measured reflections
237 independent reflections
203 reflections with
$I>2 \sigma(I)$
$h=0 \rightarrow 8$
$k=0 \rightarrow 8$
$l=0 \rightarrow 6$
2 standard reflections
frequency: 180 min
intensity decay: 0.1%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.076$
$S=1.189$
237 reflections
16 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0396 P)^{2}\right.$ $+0.1055 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$\Delta \rho_{\text {max }}=1.79 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.15 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.011 (6)

Scattering factors from International Tables for Crystallography (Vol. C)
$(\Delta / \sigma)_{\max }<0.001$
Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{t} . \mathbf{a}_{j}$					
	Occupancy	x	y		$U_{\text {eq }}$
K	1	0	$1 / 2$	$1 / 2$	$0.0432(6)$
Pd	1	0	0	0	$0.0220(3)$
Br	$0.56(3)$	$0.23385(8)$	$0.23385(8)$	0	$0.0353(18)$
Cl	$0.44(6)$	$0.23385(8)$	$0.23385(8)$	0	$0.027(5)$

Table 2. Selected bond lengths (\AA)
$\mathrm{K}-\mathrm{Cl} / \mathrm{Br}(\times 8) \quad 3.3168(4) \quad \mathrm{Pd}-\mathrm{Cl} / \mathrm{Br}(\times 4) \quad 2.3934$ (9)
With the aim of limiting the time of the experiment and considering the number of refined parameters (16), the reflections were collected as indicated in the Data collection section (completeness $\simeq 88 \%$). In the final electron-density difference map, the minimum $\left[-1.15 \mathrm{e} \AA^{-3}\right.$ at $\left.(0,0,0.208)\right]$ and maximum $\left[1.79 \mathrm{e}^{\AA^{-3}}\right.$ at $\left.(0,0,0)\right]$ peaks occur at 0.88 and $0.00 \AA$ from the Pd atom, respectively.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: CADAK (Blessing, 1987). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ATOMS for Windows (Dowty, 1995). Software used to prepare material for publication: SHELXL97.

We are grateful to Dr Claude Didierjean (Laboratoire de Cristallographie et Modelization des Materiaux Mineraux et Biologiques, Faculté des Sciences de Nancy I) for his help during the data reduction.

> Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1258). Services for accessing these data are described at the back of the journal.

References

Blessing, R. H. (1987). Crystallogr. Rev. 1, 3-58.
Dowty, E. (1995). ATOMS for Windows. Version 3.2. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Mais, R. H. B., Owston, P. G. \& Wood, A. M. (1972). Acta Cryst. B28, 393-399.

Martin, D. S. Jr, Bonte, J. L., Rush, R. M. \& Jacobson, R. A. (1975). Acta Cryst. B31, 2538-2539.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1999). C55, 1972-1974

$\mathbf{N a}_{2} \mathbf{N b O}_{2} \mathrm{AsO}_{4}$, a new niobium monoarsenate

Khaled Hizaou, ${ }^{a}$ Noureddine Jouinı, ${ }^{b}$ Ahmed Driss ${ }^{a}$ and Tahar Jounin ${ }^{a}$

${ }^{a}$ Département de Chimie, Faculté des Sciences, 1060 Campus Universitaire, Tunis, Tunisia, and ${ }^{b}$ Laboratoire de Chimie Divisée et Catalyse, Université de Paris VII, 2 Place Jucieu, 75250 Paris CEDEX 05, France. E-mail: ahmed. driss@fst.rnu.tn
(Received 9 August 1999; accepted 29 September 1999)

Abstract

The two-dimensional framework of disodium dioxoniobium arsenate is built up from infinite $\left[\mathrm{NbO}_{6}\right]$ chains extending along the c axis, linked together by AsO_{4} tetrahedra. Each AsO_{4} tetrahedron is bonded to three different NbO_{6} octahedra, two of which belong to the same chain. The Na^{+}cations are located between the covalent $\left[\mathrm{NbAsO}_{6}\right]^{2-}$ layers in hexagonal channels. The structure is compared with those of $M M^{\prime} X \mathrm{O}_{6}(M=\mathrm{K}$, $\mathrm{Tl} ; M^{\prime}=\mathrm{Sb}, \mathrm{Nb} ; X=\mathrm{P}, \mathrm{As}$) and $\mathrm{NaVOAsO}_{4}$.

Comment

In the course of our investigation of the $\mathrm{Na}_{2} \mathrm{O}-\mathrm{Nb}_{2} \mathrm{O}_{5}-$ $\mathrm{As}_{2} \mathrm{O}_{5}$ system, in a search for open framework structures, we have reported previously the tunnel compound $\mathrm{Na}_{3} \mathrm{NbO}\left(\mathrm{AsO}_{4}\right)_{2}$ (Hizaoui et al., 1999). The present report deals with a new compound found in the same system, i.e. $\mathrm{Na}_{2} \mathrm{NbO}_{2} \mathrm{AsO}_{4}$. Dioxoniobium disodium arsenate has a layer structure, built up from chains of trans-corner-sharing NbO_{6} octahedra with alternating short and long $\mathrm{Nb}-\mathrm{O}$ bonds; $\mathrm{Nb}-\mathrm{O}=1.882$ (2) \AA and $\mathrm{Nb}-\mathrm{O}^{\mathrm{F}}=2.012$ (2) \AA [symmetry code: (i) $x, 1-y$, $\left.\frac{1}{2}+z\right]$. These infinite chains are interconnected laterally in the (100) plane by AsO_{4} tetrahedra (Fig. 1). Each AsO_{4} tetrahedron bridges two successive NbO_{6} octahedra of the same chain by sharing O 2 and O 3 atoms, and bridges a third NbO_{6} octahedron of an adjacent chain through O 4 . The free O -atom apices, O 1 and O6, point alternately up and down the layers. This arrangement of polyhedra delimits distorted hexagonal windows connecting the interlayer spaces. In two suc-
cessive layers related by the 2_{1} axis, the windows form tunnels parallel to the [101] and [101] directions, where the $\mathrm{Na}^{+}{ }^{+}$cations reside (Fig. 2). The Nal^{+}and Na^{+} cations are located in the interlayer space. The NbO_{6} octahedra are slightly distorted, as in many niobium(V) arsenates; the $\mathrm{Nb}-\mathrm{O}$ bond lengths range from 1.765 (2) to 2.210 (2) \AA [average 2.050 (2) \AA]. The AsO_{4} tetrahedron is almost regular, with As-O distances ranging from 1.652 (2) to 1.705 (2) \AA and $\mathrm{O}-\mathrm{As}-\mathrm{O}$ angles ranging from $108.2(1)$ to $113.5(1)^{\circ}$. As is usual in most condensed arsenate ions, the unshared O atom, Ol , forms a shorter bond than the other three O atoms. The bond-valence sums (Brown \& Altermatt, 1985) for the Nb^{\vee} and As^{\vee} atoms of 5.042 and 4.984, respectively, are in good agreement with their formal oxidation states. The $\mathrm{Na}_{2} \mathrm{NbO}_{2} \mathrm{AsO}_{4}$ structure exhibits a relationship with $\mathrm{K}_{2} \mathrm{SbPO}_{6}$ (Lachgar et al., 1986), $\mathrm{K}_{2} \mathrm{SbAsO}_{6}$ (Botto \& Garcia, 1989) and $\mathrm{NaVOAsO}_{4}$ (Haddad et al., 1992). Indeed, one can pass from the structure of $\mathrm{K}_{2} \mathrm{SbPO}_{6}$ (one-dimensional) to that of $\mathrm{Na}_{2} \mathrm{NbO}_{2} \mathrm{AsO}_{4}$ (two-dimensional) by separating one of the two O atoms of the edge shared between successive SbO_{6} octahedra and forming an $\mathrm{Sb}-\mathrm{O}-\mathrm{P}$ bridge with neighbouring chains. The structure of $\mathrm{NaVOAsO}_{4}$ (three-dimensional) can be derived from that of $\mathrm{Na}_{2} \mathrm{NbO}_{2} \mathrm{AsO}_{4}$ (twodimensional) by forming mixed $\mathrm{Nb}-\mathrm{O}$-As bridges between successive layers; the O 1 apex is shared with the O6 apex, leading to the elimination of one O atom. Electrical neutrality requires the removal of two Na^{+} cations from the interlayer space. Comparison with the analogous compound $\mathrm{Tl}_{2} \mathrm{NbPO}_{6}$ (Fakhfak et al., 1993) shows that $\mathrm{Na}_{2} \mathrm{NbO}_{2} \mathrm{AsO}_{4}$ and $\mathrm{Tl}_{2} \mathrm{NbPO}_{6}$ are both twodimensional compounds; the two structures differ in the type of connection between the polyhedra.

Fig. 1. DIAMOND (Bergerhoff, 1996) view along the c axis of the crystal structure of $\mathrm{Na}_{2} \mathrm{NbO}_{2} \mathrm{AsO}_{4}$.

